

 3

Abstract— This paper presents object-oriented

security models for a secured object signature of
web and XML objects. The models address web
and XML securities in general. They address in
particular security wrappers for web pages,
security nodes for network machines, and mid-tier
securities for middle-tier machines. This paper
discusses in a high level implementations for
security nodes and mid-tier securities. It
discusses an implementation for security wrappers
in detail. The implementation encrypts web and
XML objects in a company’s Intranet web site and
enhances the protections of them against
unauthorized accesses by an intruder. The
encryption method uses the combination of a
randomly generated session key, a session id that
consists of remote host id and port number, and
an access sequence number that is maintained by
the web server. Although the encryption method
addresses the security wrappers, its approach is
equally applicable to security nodes and mid-tier
securities as well.

Index Terms—object-oriented, security, Web,
XML, XSL

1. INTRODUCTION
s Internet e-commerce activities grow more
and more every year, Internet security is also

becoming more important in securing the capitals
invested in these activities. Oppliger [8] stated in
a workshop held by the Internet Architecture
Board (IAB) back in 1994 that scaling and
security were considered to be the two most
important problem areas for the Internet as a
whole. Chang [4] uses an object-oriented
analysis and modeling approach to define the
architecture of a proposed method for securing
web objects. It is known that object has both
attributes and behaviors. Blaha et al. [2] covers
in detail the object-oriented terminology and
technology. Network machines, web servers,
web documents (XHTML web pages), XML
documents, XSL documents, database servers,
and mid-tier machines are examples of web or
XML objects.

 For web documents, examples of attributes
are URL web address, title, and hyperlinks.

Manuscript received October 12, 2005. P. H. Chang is with the
College of Management, Lawrence Technological University,
Southfield, Michigan, U.S.A. (e-mail: chang@ltu.edu).

Examples of behaviors are navigation to other
web pages through hyperlinks and the dynamic
operations implemented by JavaScript functions
defined in the web pages.

This paper covers the security model for web
and XML documents, network machines, and
mid-tier machines. For brevity, it concentrates on
web and XML documents and covers the network
machines and mid-tier machines in high level.
The implementation approach is applicable to the
latter two. Web pages and XML documents are
stored or generated by programs on a web
server. They may be protected from
unauthorized people with the addition of a
security mechanism in the server programs.
Static web pages in XHTML files are in general
accessed through hyperlinks in other web pages.
Static web pages can also be represented in
XML and XSL files. XHTML files, XML/XSL files,
and XML files in general are more vulnerable to
unauthorized accesses by an outside intruder.
This paper concentrates the discussion on the
intranet web site as it is used more for B2B
activities.

 Common encryption techniques involve with
encrypting the whole document. Kalakota et al.
[6] contains general discussions on encryption
and web transaction security. W3C [12] provides
general guidelines on securing XML documents
for Web services. W3C [13] provides guidelines
for XML digital signatures. Encryption processes
that encrypt whole documents generally incur
performance overheads. Sometimes, it is not the
whole content of the documents that need to be
encrypted. Rather it is how the access to these
documents, for example, a hyperlink for a web
document, needs to be protected through
encryption.

 This paper presents a selective encryption
approach in the sense that instead of encrypting
a whole document it encrypts a selected element
of the document, using the hyperlink element as
an example. In other words, it uses an
encryption method that protects the access to
XHTML documents or their XML/XSL
equivalences through hyperlinks. This paper
names the encrypted result for a hyperlink a
secured object signature of the hyperlink. The
session key, which is used as the encryption key,
is first generated when a user logs into the web
site. This paper introduces a concept of

Secured Object Signatures for Web Objects
and XML Objects

Chang, H., Peter

A

 4

including placeholders and references to
templates to the hyperlinks. It introduces the
access sequence number that tracks a user’s
access, which is incremented each time the user
of the current session accesses a XHTML
document or its XML/XAL equivalence through a
hyperlink. This paper also introduces the
algorithm for a generic Common Gateway
Interface (CGI) script, implemented in the Perl
language, that handles the events of the access
through hyperlinks. This paper uses a database
managed by a Relational Database Management
System (RDBMS) to track and update the access
sequence number. Hoffer et al. [7] covers the
RDBMS technology. This paper presents one
concrete example for the implementation that an
XHTML document or its XML/XSL equivalence
for a company’s phone directory is listed through
a hyperlink on the company’s intranet home
page. In this paper, after the encryption method
is applied to the hyperlink reference, two
scenarios will be discussed. The first scenario is
that a valid user accesses the phone directory
through the hyperlink and gets through. The
second scenario is that an outside intruder
attempts to access the phone directory and is
denied the access.

2. SECURITY ARCHITECTURE FOR WEB OBJECTS
Figure 1 describes an object model for a client

machine that hosts a web browser application,
which accesses web or XML documents on web
servers in a company’s intranet or the Internet.
The rest of this paper considers a web page or
an XML document as an object instance of the
WebDocument object class. For an ease of
discussion, this paper concentrates the
discussion on web pages up to Section 5.
Discussions on XML documents will follow on
Section 6.

When the browser requests a web page from a
web server, the web server downloads the web
page to the client machine to be rendered by the
browser and displayed to the user.

In object-oriented terminology, a relationship

among object classes is called an association.
Binary association, the association between two
classes, is the most common ones. In some
cases, an object class may be associated with
itself due to that it has two roles, for example, a
person class that models a company’s workers
may have two roles: manager and employee.
Such an association is called the unary
association.

Figure 1 shows examples of binary

associations. One of them is the association
between the WebServer class and the
WebDocument class. Figure 1 also shows
examples of unary associations. One of them is
the association between web pages that contain

instances of the XHTML anchor tag for hyperlink:
, referred as the link source, and
the web pages identified by the web address’ url,
referred as the link target. For each web page as
an instance of the WebDocument class, there
may be zero or more hyperlinks contained
therein. Each web page may also be referred to
as link reference by zero or more web pages.
Figure 1 shows the multiplicity reflecting the
many-to-many association. For a many-to-many
association, it is necessary to create an
association class to correctly model the
association because there may be attributes that
belong more appropriately to the association
rather than to the WebDocument class. The
association class is depicted as SecurityWrapper
in Figure 1. This association class may model
security methods such as encryption and
database management system (DBMS) facilities
for the web pages. Blaha et al. [2] discusses in
detail the association class.

Figure 1. Object Model for the Security Architecture

The communication protocol between the client

machine and the web server is HTTP. Data
packets are transmitted between the client and
server through network machines, which are
modeled as the object class NetworkMachine in
Figure 1. Examples of the network machines are
hubs, switches, routers, domain name servers,
and so on. A network machine may transmit
data packets to many other network machines.
Conversely a network machine may also receive
data packets transmitted from many other
network machines. So this association is a many
to many unary association. From the same
reason stated above, it is necessary to create an
association class for this many-to-many
association. This association class may model a
security node that enforces security for data
transmission depicted as SecurityNode in Figure

SecurityWrapper

WebDocument

0..*

0..*
+linkReference
0..*

ReferTo

+linkSource 0..*

ClientHost Database
Server WebServer

0..*

1

0..*

1

Store

0..*0..* 0..*0..*

Serve

0..* 1..* 0..* 1..*
Access

NetworkMachine

0..*

0..*

+netSource

0..*

0..* +netTarget

SecurityNode

MiddleTierMachine

0..*
0..* 0..*

0..*

+midTierSource

+midTierTarget

MidTierSecurity

 5

1. Examples of security nodes are firewalls and
proxy servers.

Web servers may also need to access

database servers through intermediate machines
that host middleware software, which are
modeled as the object class MiddleTierMachine
in Figure 1. Similarly there is a many-to-many
unary association on the MiddleTierMachine
object class because a mid-tier machine may
transmit (receive) data packets to (from) many
other mid-tier machines. It is also necessary to
create an association class for this association.
This association class may model the security
among mid-tier machines depicted as
MidTierSecurity in Figure 1.

The rest of this paper generally refers the three

association classes: SecurityWrapper,
SecurityNode , and MidTierSecurity as the
security association class. Chang [4] presented
an earlier version of the object model that
addresses the association class
SecurityWrapper, but does not address the
association classes SecurityNode and
MidTierSecurity.

3. IMPLEMENTATION OF SECURITY ASSOCIATION
CLASS

A security standard such as ISO X. 700
generally addresses security in areas that
contain access, authentication, authorization, and
auditing. Additionally areas like data
confidentiality, data integrity, and non-repudiation
services to communicating peers are also
emphasized. In addition, some object-oriented
approaches for security modeling addresses the
issues of security in each of the seven layers of
ISO’s OSI model.

Many security implementations nowadays use

configuration parameters stored in files instead of
an operational databases because the number of
these parameters is generally smaller than the
number of transactional records that require a
database and it is generally simpler to add,
update, and delete the parameters values in files.
Redundancy, however, leads to inconsistency.
For example, suppose a security parameter
value is stored in multiple files. In the event that
this value needs to be changed, it should be
changed in all the files that contain it. If it is not
changed in one file, then the security measure
related to this parameter is compromised. The
object model depicted in Figure 1 provides a
solid foundation for implementation to databases.
The benefit of database such as a relational
database is that the redundancy of data is
minimized. The performances of DBMS’ and the
server software and hardware platforms that
support them are getting better. In addition, the
DBMS itself is a security layer that adds extra

level of security that the file system is lack of.
For example, most relational database
management systems (RDBMS’) provide record
and field level security, while file system provides
only security at the file level.

Implementations of the SecurityNode

association class include firewalls, screen
routers, and proxy servers, which use the
approach of packet filtering to examine and
control the transmission of data packets on the
exterior network entering the intranet. Oppliger
[8] covers firewalls in more details. Oppiger’s
paper, however, does not address how are the
security configuration data such as values of
security parameters stored. The object model in
Figure 1 may be expanded as a basis to design
databases that store them.

Implementations of the MidTierSecurity

association class include establishing and
enforcing security policies for applications that
span multiple administrative domains. The policy
addresses among others security events and the
associated services. A commonly adopted
paradigm for event services is the publisher-
subscriber model. Middleware software resides
on the mid-tier machines. Tripathi [10] covers the
middleware security. Tripathi’s paper also does
not address how are the security configuration
data such as values of security parameters
stored. The object model in Figure 1 may also be
expanded as a basis to design databases that
store them.

As for an implementation of the

SecurityWrapper association class this paper
proposes a method of using encryption and
database managed by a DBMS. Common
Gateway Interface (CGI) script is one protocol
that a web server uses to respond to clients’
requests sent by web browsers through web
pages. Other protocols include Microsoft’s Active
Server Page (ASP) and Sun’s Java Server Page
(JSP) and servlets. These other means are
aligned with web services; for example, ASP is
with Microsoft ASP.NET (Tabor [9]), and
JSP/Servlet is with Sun Sunone (Watson [11].)
Web services are based on XML, which will be
discussed in Section 6.

For brevity this paper assumes that the web

servers execute CGI programs responding to
clients’ requests. CGI is usually implemented
with programming languages such as Perl or
C++/C. These languages require relatively less
supporting libraries than those languages used
for J2EE or .NET framework. The CGI examples
presented in this paper were developed in the
Perl language (Bunce et. al. [1]). The same
method is applicable to other protocols and
programming languages such as Java or C#.

 6

Such protocols and tools are parts of the
implementations of the middleware concept.
Chang [3] discusses similarities among
implementations of the middleware.

The association class SecurityWrapper may
model any security feature that secures the
implementation of the association between the
group of instances of WebDocuments with link
source role and the group of instances of
WebDocuments with link target role. This paper
proposes the addition of an encryption wrapper
to the URL address in the XHTML anchor tag as
the security feature. The encryption is
implemented in CGI programs written in the Perl
language. The key for the encryption is
generated randomly. After its generation, its
value is maintained in a database table. The
remaining sections of this paper describe this
implementation.

4. SESSION ID
There are in general two types of access to

web documents. The first type is a viewing of
static web page; for example, reading a
newspaper article on one of the web site of a
newspaper company. In this case, a reader
simply browses over the static web pages. The
web server does not need to know the
identification of the reader and hence does not
need to maintain a session with the reader. The
second type is transaction oriented, that is, a
user interacts with the web page by providing
input data for a period of time; for example, doing
online shopping through an implementation of the
shopping cart design. In this case, a user needs
to provide input to multiple web pages. The web
server needs to know an identification of the user
and hence needs to maintain a session with the
user.

A web server maintains two environment

variables associated with the client:
REMOTE_HOST and REMOTE_PORT. The
former contains the IP address of the client
machine and the latter contains the port number
used by the client machine to communicate with
the web server.

Assume that a user uses a desktop or laptop

personal computer to access web documents on
a web server. The combination of
REMOTE_HOST, REMOTE_PORT, and the web
server system time at the first instance of access
uniquely identifies the session for the user. From
now on this paper considers a session id to be of
the format: ipAddress-portNumber-timestamp,
where ipAddress is the value of
REMOTE_HOST, portNumber is the value of
REMOTE_PORT, and timestamp is the system
time on the web server. This paper addresses an
approach that when a user logs on to a web page

to start a session, the login CGI script generates
a session id as was just described and a session
key to be used as the encryption key.

5. PLACEHOLDERS AND ENCRYPTION
In many cases, intranet users attempt to log

into their intranet web sites from remote locations
outside their working facilities through the
Internet. In responding to a client request for a
user’s login, after authenticating the user, a CGI
script generates a home web page containing
welcoming information, which may possibly
include hyperlinks.

A scenario is that the home web page named,

say, index.html in a company’s intranet web site
includes a hyperlink to the employee phone
directory as shown in Figure 2.

Phone Directory

Figure 2. Hyperlink to the web page for Phone Directory

The phone directory may be a static XHTML

file stored on the web server. Thus, if a user
successfully logs on the company’s intranet web
site, the user can freely access the phone
directory through the hyperlink. Inductively, the
user can freely access any static XHTML file that
is referenced by a hyperlink on the web page that
the user is currently on. As was mentioned in
Section 4, the IP address of the client machine
and the port number used by the client machine
are contained in the two environment variables:
REMOTE_HOST and REMOTE_PORT,
respectively. If the values for these two variables,
which form the session id, are intercepted on the
Internet by an intruder, the intruder can
conceivably at least get onto the company’s
intranet web site and access all static XHTML
files that are referenced by hyperlinks in the
intranet home page.

<a href="getcontent.pl?template=phoneDirTemplate.html
&sessionId=ZZZZZZS&sessionKey=ZZZZZK
&accessSeqNumber=ZZZZZA">Phone Directory

Figure 3. Hyperlink in index.html with Placeholders

This paper presents an encryption algorithm
that adds an extra layer of security that protects
an important Web object such as the hyperlink in
Figure 2. An implementation code for this
algorithm is available from the author upon
request. From this code, the decryption
algorithm can be derived. This paper’s goal is
using an algorithm that is effective, but not very
complex and thus does not add too much
overhead to the processing time.

This paper first proposes to replace the

 7

reference to the name of the static web page in
the home web page index.html by the name
getcontent.pl of a CGI script with a template file
name and placeholders as its arguments as
shown in Figure 3.

The template file phoneDirTemplate.html is a

template file for the static web page
phoneDirectory.html discussed previously. It
differs from the latter only in that it contains
placeholders as replacements for static links in
the latter. These static links are inserted by the
owner of the file phoneDirectory.html that allow a
user to navigate to some common web pages
such as the home page. Figures 4 shows a
hyperlink in phoneDirectory.html to home web
page. Figure 5 shows the revised hyperlink in
the template file phoneDirTemplate.html.

Home

Figure 4. Hyperlink in phoneDirectory.html to the web page

for home

<a href="getcontent.pl?template=../htdocs/index.html
&sessionId=ZZZZZZS&sessionKey=ZZZZZK
&accessSeqNumber=ZZZZZA">Home

Figure 5. Hyperlink in phoneDirTemplate.html with
Placeholders

Assume that the login web page contains the

following line:

<form method=”post” action=”login.pl”>

where login.pl is the name of the CGI script that
handles the authentication of users. The login.pl
script sets up a session key, a two digits number
less than 62, as the key for the encryption. The
reason that the session id is not used as the key
is that it tends to be a long string, which is not
suitable for the encryption algorithm that is
propose in this paper. The key steps of the
login.pl script involve with setting up encryption
environment and session id, authenticating the
user who logs in, updating database table with 0
as the initial access sequence number,
encrypting session id and the access sequence
number, and replacing the placeholders
ZZZZZZS, ZZZZZK, and ZZZZZA in Figure 3 by
the encrypted data for session id, the session
key, and the encrypted data for access number,
respectively. The resulting hyperlink acts like a
secured object signature for the hyperlink in
Figure 2.

To show that the encryption secures the static
hyperlinks, this paper considers two scenarios.
The first scenario is that a valid user logs on to
the intranet home page and at some point of the
session accesses the phone directory through its
hyperlink. The second scenario is that an

intruder intercepts a copy of a transmitted
XHTML file and manages to get on the intranet
home page. The intruder then attempts to
access the phone directory through the hyperlink.

For the first scenario, a CGI script named

getContent.pl first validates that the access
sequence number matches the one in the
database. If it does not, then it logs an error
message and terminates the CGI program.
Otherwise it updates the access sequence
number in the database and displays the content
of the template of the phone directory with the
substitutions of encrypted session id, session
key, and encrypted access sequence number for
the placeholders in the hyperlinks, if they exist.

The key steps of the getContent.pl script

involve with decryption and checking whether the
access sequence number is in sequence. That is,
whether it matches the access sequence number
in the database. If they do not match, then there
is a possible intrusion. In this case, reject the
access. If they match, then increment the access
sequence number in the database by 1, re-
encrypt the this access sequence number along
with session id, and repeat the steps of replacing
placeholders as those for the login.pl script.

For the second scenario, the intruder

intercepts a copy of the transmitted XHTML file.
When the intruder gets on the company’s intranet
web site, the access sequence number is out of
sequence, because the session for the valid user
has already updated it in the UserAcess table in
the database. If the intruder wants to access the
phone directory through the hyperlink, the
getContent.pl script will discover that the access
sequence number with the session id and
session key on the intercepted copy does not
match the one in the UserAccess table in the
database. The getContent.pl script then denies
the intruder from accessing the company’s phone
directory.

6. ENCRYPTION IN XML/XSL AND SELECTIVE
ENCRYPTION

XML is used in many areas nowadays such as
Web services technology and databases. In
particular, a web page in XHTML format can be
represented by an XML file and an XSL file. For
example, the XHTML element in Figure 2:

Phone Directory

can be represented by the XML element:

<PhoneDirectory>
 <name>Phone Directory</name>
 <link>phoneDirectory.html</link>
</PhoneDirectory>

 8

and the corresponding XSL element:

<xsl:variable name ="linkname">
 <xsl:value-of select = "PhoneDirectory/link"/>
</xsl:variable>
 <xsl:value-of select =
 "phoneDirectory/name"/>

W3C [14] defines the XSL syntax. The XHTML

element in Figure 3

<a href="getcontent.pl?template=phoneDirTemplate.html
&sessionId=ZZZZZZS&sessionKey=ZZZZZK
&accessSeqNumber=ZZZZZA”>Phone Directory

can also be represented by the following XML
elements:

<PhoneDirectory>
 <name>Phone Directory</name>
 <link>getcontent.pl</link>
 <template>phoneDirTemplate.html</template>
 <sessionId>ZZZZZZS</sessionId>
 <sessionKey>ZZZZZZK</sessionKey>
 <seqNumber >ZZZZZA</ seqNumber >
</PhoneDirectory>

and the corresponding XSL elements:

<xsl:variable name ="linkname">
 <xsl:value-of select = "PhoneDirectory/link"/>
</xsl:variable>
<xsl:variable name ="template">
 <xsl:value-of select = "PhoneDirectory/ template"/>
</xsl:variable>
<xsl:variable name ="sessionId">
 <xsl:value-of select = "PhoneDirectory/sessionId"/>
</xsl:variable>
<xsl:variable name ="sessionKey">
 <xsl:value-of select = "PhoneDirectory/sessionKey"/>
</xsl:variable>
<xsl:variable name ="seqNumber">
 <xsl:value-of select = "PhoneDirectory/seqNumber"/>
</xsl:variable>
<a

href="{$linkname}"?template={$template}&sessionId={$s
essionId}&sessionKey={$sessionKey}&accessSeqNumber=
{$seqNumer}><xsl:value-of select =
"phoneDirectory/name"/>

XML is used in many other areas as well such

as second-generation Web services and Service-
Oriented Architecture (SOA). The role of a
computer program as an XML parser is that it
parses the structures of an XML data packet or
an XML file. In the last example, the CGI script
getContent.pl and the web browser are the XML
parsers. The approach of using a template file
with placeholders and applying an encryption
method to convert the lines containing the
placeholders to secured object signatures for
certain XML elements can be applied to XML in
general.

Geer [5] points out a research done by Ron

Schmelzer of the market research firm ZapThink
that XML will rise from 3 percent of global
network traffic in 2003 to at least 40 percent by
2008. Some of the XML traffic may include
overheads of full data encryption. The selective
encryption approach proposed in this paper may
be used with the binary XML approach discussed
in Geer [5] to lessen the XML traffic volumes.

7. CONCLUSION
Ensuring web security is a complex problem

that involves almost every aspect of the
enterprise of an organization. Object-oriented
analysis and modeling technique is especially
adaptable to analyze complex problems and
model solutions for them. This paper covered
the secured object signatures based on a
security model for web documents and XML
documents, network machines, and mid-tier
machines by using the object-oriented technique.
The security model is based on three security
association classes: SecurityWrapper,
SecurityNode, and MidTierSecurity as described
in Section 3. Although this paper concentrated
on the security association class
SecurityWrapper by presenting the approach that
uses encryption methods and databases, the
approach is applicable to the two other security
association classes, which span the whole
spectrum of the network infrastructure for web
and XML applications.

REFERENCES
[1] Bunce, T., Descartes, A., “Programming the Perl DBI,”

O’Reilly and Associates, Inc., 2000.
[2] Blaha, M., W. Premerlani, W., “Object-Oriented

Modeling and Design for Database Applications,“
Prentice Hall, 1998.

[3] Chang, P., “A Platform Independent Middleware
Architecture for Accessing Databases on a Database
Server on the Web,” IEEE, IEEE R4 Conference,
Indianapolis, Indiana, June 2003.

[4] Chang, P., “On An Architecture for Securing Web
Objects,” ASEE/NCS 2004 Conference, Western
Michigan University, Kalamazoo, Michigan, April 2004

[5] Geer, D, “Will Binary XML Speed Network Traffic?,”
IEEE, IEEE Computer, April 2005, 16-18.

[6] Kalakota, R., Whinston, A., “Electronic Commerce, A
Manager’s Guide,” Addison Wesley Longman, Inc.,
1997.

[7] Hoffer, J., Prescott, M., McFadden, F., “Modern
Database Management,” 6th ed., Prentice Hall, 2002.

[8] Oppliger, R., “Internet Security: Fire Walls and Beyond.,”
ACM, Communications of the ACM, Volume 40 Issue 5,
May 1997. 92-102.

[9] Tabor, R., “Microsoft .NET XML Web Services,” SAMS,
2002.

[10] Tripathi, A., “Challenges Designing Next-Generation
Middleware Systems,” ACM, Communications of the
ACM, Volume 45 Issue 6, June 2002. 39-42.

[11] Watson, M., “Sun ONE Services,” 1st ed., John Wiley &
Sons, 2002.

[12] W3C, “Web Service Architecture Requirements,”
http://www.w3.org/TR/2002/WD-wsa-reqs-20021114.

[13] W3C, “XML Signature WG,”
http://www.w3.org/Signature/

[14] W3C, “XSL Transformations,” http://www.w3.org/TR/xslt,
(XSLT), Version 1.0, 1999.

